в ЦВМ, поразрядная
операция над кодами произвольной длины по правилам алгебры логики. Л. о. производится над всеми цифрами кодов одна и та же, при этом каждая цифра результата зависит не более чем от одной цифры одного или нескольких кодов. В ЦВМ Л. о. выполняются в большинстве случаев над двоичными кодами. К числу основных и наиболее распространённых Л. о. относятся операции отрицания, конъюнкции, дизъюнкции и эквивалентности (см. табл. при ст.
Алгебра логики)
. Эти Л. о. достаточно просто реализуются физическими элементами ЦВМ, а более сложные Л. о. могут быть программно сведены, например, только к трём Л. о.: отрицания, конъюнкции и дизъюнкции. Примеры использования Л. о.: отрицание - инвертирование при преобразовании прямого кода в обратный или дополнительный код; конъюнкция - логическое умножение для "выделения" любых частей кода; дизъюнкция - логическое сложение при формировании новых команд из нескольких других команд; эквивалентность - равнозначность при определении поразрядного тождества кодов. К Л. о. часто относят также сдвиг, проверку равенства числа нулю, проверку знака числа, получение абсолютной величины числа и др. В универсальных ЦВМ Л. о. обеспечивают управление ходом выполнения программ и взаимосвязь в программах, формирование новых команд, перекодирование данных, поиск информации по логическим шкалам и др. Л. о. являются основой для создания специализированных логических цифровых машин, для решения задач анализа переключательных схем с целью их минимизации и задач синтеза, т. е. составления и подбора элементарных схем, посредством которых можно создавать более сложные схемы для реализаций заданных функций.